Fuzzy Affective Player Models: A Physiology-Based Hierarchical Clustering Method
نویسندگان
چکیده
Current approaches to game design improvements rely on time-consuming gameplay testing processes, which rely on highly subjective feedback from a target audience. In this paper, we propose a generalizable approach for building predictive models of players’ emotional reactions across different games and game genres, as well as other forms of digital stimuli. Our input agnostic approach relies on the following steps: (a) collecting players' physiologically-inferred emotional states during actual gameplay sessions, (b) extrapolating the causal relations between changes in players' emotional states and recorded game events, and (c) building hierarchical cluster models of players' emotional reactions that can later be used to infer individual player models via fuzzy cluster membership vectors. We expect this work to benefit game designers by accelerating the affective playtesting process through the offline simulation of players' reactions to game design adaptations, as well as to contribute towards individually-tailored affective gaming.
منابع مشابه
High-Dimensional Unsupervised Active Learning Method
In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...
متن کاملHierarchical affective content analysis in arousal and valence dimensions
Different from the existing work focusing on emotion type detection, the proposed approach in this paper provides flexibility for users to pick up their favorite affective content by choosing either emotion intensity levels or emotion types. Specifically, we propose a hierarchical structure for movie emotions and analyze emotion intensity and emotion type by using arousal and valence related fe...
متن کاملFuzzy C-Means Clustering Algorithm for Site Selection of Groundwater Artificial Recharge Areas (Case Study: Sefied Dasht Plain)
Artificial recharge can be an effective method to raise the groundwater table and to resolve the groundwater crisis in Sefid dasht plain. The most important step to successful accomplishment of artificial recharge is locating suitable areas for artificial recharge. Hence this research carried out with purpose of determining suitable areas for artificial recharge in Sefid dasht plain. Slope, sur...
متن کاملFuzzy C-Means Clustering Algorithm for Site Selection of Groundwater Artificial Recharge Areas (Case Study: Sefied Dasht Plain)
Artificial recharge can be an effective method to raise the groundwater table and to resolve the groundwater crisis in Sefid dasht plain. The most important step to successful accomplishment of artificial recharge is locating suitable areas for artificial recharge. Hence this research carried out with purpose of determining suitable areas for artificial recharge in Sefid dasht plain. Slope, sur...
متن کاملPrediction of slope stability using adaptive neuro-fuzzy inference system based on clustering methods
Slope stability analysis is an enduring research topic in the engineering and academic sectors. Accurate prediction of the factor of safety (FOS) of slopes, their stability, and their performance is not an easy task. In this work, the adaptive neuro-fuzzy inference system (ANFIS) was utilized to build an estimation model for the prediction of FOS. Three ANFIS models were implemented including g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014